Through a dihedral prism

Griff Elder

University of Nebraska at Omaha

June 2, 2023

(additive) Galois module structure

Let p be prime and let K be a local field of residue characteristic p. e.g.

- in characteristic 0: K is a finite extension of \mathbb{Q}_p , the *p*-adic numbers.
- in characteristic p: K = 𝔅((t)), field of Laurent series with coefficients in a finite field 𝔅 of characteristic p.

Let L/K be a finite, totally ramified Galois extension with $G = \operatorname{Gal}(L/K)$ a p-group

The normal basis theorem says that $L = K[G] \cdot \alpha$ for some $\alpha \in L$.

Towards an integral version: If there is an order \mathcal{A} in $\mathcal{K}[G]$ such that the ring of integers $\mathcal{O}_L = \mathcal{A} \cdot \alpha$ for some $\alpha \in \mathcal{O}_L$, this order \mathcal{A} must be the *associated order*.

$$\mathcal{A}_{L/K} = \{ x \in K[G] : x \cdot \mathcal{O}_L \subseteq \mathcal{O}_L \}.$$

We use " $\mathcal{O}_L = \mathcal{A}_{L/K} \cdot \alpha$ " and " \mathcal{O}_L is free over $\mathcal{A}_{L/K}$ " interchangeably.

This is the goal of (additive) GMS.

Snapshot: C_p -extensions

Theorem (F. Bertrandias, J.P. Bertrandias, M.J. Ferton, 1972)

Let K be a finite extension of \mathbb{Q}_p . Let L/K be a totally ramified extension of degree p with ramification break b. (Necessarily, $1 \le b \le \frac{pv_K(p)}{p-1}$)

- If $p \mid b$, then \mathcal{O}_L is free over $\mathcal{A}_{L/K}$.
- 3 If $p \nmid b$, let $r(b) \equiv b \mod p$ with $1 \leq r(b) \leq p 1$, then
 - if $1 \le b \le \frac{pv_K(p)}{p-1} 1$, then \mathcal{O}_L is free over $\mathcal{A}_{L/K}$ if and only if $r(b) \mid (p-1)$.
 - ◎ if $b \ge \frac{pv_K(p)}{p-1} 1$, \mathcal{O}_L is free over $\mathcal{A}_{L/K}$ if and only if $N \le 4$, where N is the length of the continued fraction expansion

$$rac{b}{p} = a_0 + rac{1}{a_1 + rac{1}{a_2 + \cdots + rac{1}{a_N}}}$$

with $a_N \geq 2$.

Theorem (A. Aiba, 2003) In characteristic p, namely $K = \mathbb{F}((t))$, $v_K(p) = \infty$ and there is only one case: $p \nmid b$. Furthermore, \mathcal{O}_L is free over $\mathcal{A}_{L/K}$ if and only if $r(b) \mid (p-1)$.

Snapshot: C_p -extensions

Theorem (F. Bertrandias, J.P. Bertrandias, M.J. Ferton, 1972)

Let K be a finite extension of \mathbb{Q}_p . Let L/K be a totally ramified extension of degree p with ramification break b. (Necessarily, $1 \le b \le \frac{pv_K(p)}{p-1}$)

- If $p \mid b$, then \mathcal{O}_L is free over $\mathcal{A}_{L/K}$.
- 3 If $p \nmid b$, let $r(b) \equiv b \mod p$ with $1 \leq r(b) \leq p 1$, then
 - if $1 \le b \le \frac{pv_K(p)}{p-1} 1$, then \mathcal{O}_L is free over $\mathcal{A}_{L/K}$ if and only if $r(b) \mid (p-1)$.
 - if $b \ge \frac{pv_K(p)}{p-1} 1$, \mathcal{O}_L is free over $\mathcal{A}_{L/K}$ if and only if $N \le 4$, where N is the length of the continued fraction expansion

$$rac{b}{p} = a_0 + rac{1}{a_1 + rac{1}{a_2 + \cdots + rac{1}{a_N}}}$$

with $a_N \geq 2$.

Theorem (A. Aiba, 2003) In characteristic p, namely $K = \mathbb{F}((t))$, $v_K(p) = \infty$ and there is only one case: $p \nmid b$. Furthermore, \mathcal{O}_L is free over $\mathcal{A}_{L/K}$ if and only if $r(b) \mid (p-1)$.

Snapshot: C_p -extensions

Theorem (F. Bertrandias, J.P. Bertrandias, M.J. Ferton, 1972)

Let K be a finite extension of \mathbb{Q}_p . Let L/K be a totally ramified extension of degree p with ramification break b. (Necessarily, $1 \le b \le \frac{pv_K(p)}{p-1}$)

- If $p \mid b$, then \mathcal{O}_L is free over $\mathcal{A}_{L/K}$.
- 3 If $p \nmid b$, let $r(b) \equiv b \mod p$ with $1 \leq r(b) \leq p 1$, then
 - if $1 \le b \le \frac{pv_K(p)}{p-1} 1$, then \mathcal{O}_L is free over $\mathcal{A}_{L/K}$ if and only if $r(b) \mid (p-1)$.
 - if $b \ge \frac{pv_K(p)}{p-1} 1$, \mathcal{O}_L is free over $\mathcal{A}_{L/K}$ if and only if $N \le 4$, where N is the length of the continued fraction expansion

$$rac{b}{p}=a_0+rac{1}{a_1+rac{1}{a_2+\cdotsrac{1}{a_N}}}$$

with $a_N \geq 2$.

Theorem (A. Aiba, 2003) In characteristic p, namely $K = \mathbb{F}((t))$, $v_K(p) = \infty$ and there is only one case: $p \nmid b$. Furthermore, \mathcal{O}_L is free over $\mathcal{A}_{L/K}$ if and only if $r(b) \mid (p-1)$.

(a) char p is part of the char 0 picture. (b) "Galois scaffold"

Intuition of a Scaffold

L/K is a totally ramified *p*-extension. A is a K-algebra of the same size: dim_K(A) = dim_K(L), with a K-action on L.

An A-scaffold on L consists of certain special elements in A which act on suitable elements of L in a way which is tightly linked to valuation.

The intuition: Given any positive integers b_i for $1 \le i \le n$ such that $p \nmid b_i$, there are elements $X_i \in L$ such that $v_L(X_i) = -p^{n-i}b_i$. Since the valuations, v_L , of the monomials

$$\mathbb{X}^{a} = X_{n}^{a_{(0)}} X_{n-1}^{a_{(1)}} \cdots X_{1}^{a_{(n-1)}} : 0 \le a_{(i)} < p,$$

provide a complete set of residues modulo p^n and L/K is totally ramified of degree p^n , these monomials provide a convenient K-basis for L.

The action of A on L is clearly determined by its action on the \mathbb{X}^a .

So if there were $\Psi_i \in A$ for $1 \leq i \leq n$ such that each Ψ_i acts on the monomial basis element \mathbb{X}^a of L as if it were the differential operator d/dX_i and the X_i were independent variables, namely if

$$\Psi_i \mathbb{X}^a = a_{(n-i)} \mathbb{X}^a / X_i,$$

then the monomials in the Ψ_i (with exponents bound < p) would furnish a convenient basis for A whose effect on the \mathbb{X}^a would be easy to determine.

As a consequence, the determination of the associated order of a particular ideal \mathfrak{P}_L^h , and of the structure of this ideal as a module over its associated order, would be reduced to a purely numerical calculation involving h and the b_i . This remains true if equality is loosened to the congruence,

$$\Psi_i \mathbb{X}^a \equiv a_{(n-i)} \mathbb{X}^a / X_i \mod{(\mathbb{X}^a / X_i)} \mathfrak{P}_L^{\mathfrak{c}}$$

for a sufficiently large "precision" c. The Ψ_i , together with the \mathbb{X}^a , constitute an *A*-scaffold on *L*. The formal definition focuses solely on valuation, remaining agnostic on the actual nature of the action.

Galois scaffolds

Ironically, the first scaffolds were **not** constructed in purely inseparable *p*-extensions where derivations occur naturally.

Those only arose when the "intuition" met Lindsay Childs. See (Byott, Childs, E., 2018) and (Koch, 2015),

...and this intuition took a long time to develop:

The first scaffolds were Galois scaffolds and arose for elementary abelian p-extensions (E., 2009), (Byott, E., 2013) in characteristic p.

Focused study of $C_p \times C_p$ -extensions with Byott.

Although, Galois scaffolds for C_{p^2} -extensions were constructed in (Byott, E., 2013), it wasn't clear how to generalize the construction to C_{p^n} -extensions with $n \ge 3$.

That is... until (E., Keating, 2022).

Today I would like to talk about a further generalization (with Kevin) to all p-groups in characteristic p.

through the lense of one small group...

Dihedral extensions in characteristic 2

Let $K = \mathbb{F}((t))$ with \mathbb{F} a finite field of characteristic 2. Let

$$D_8 = \langle \gamma, \sigma : \sigma^8 = \gamma^2 = 1, \gamma \sigma \gamma = \sigma^{-1} \rangle$$

Proposition. L is a totally ramified D_8 -extension over K if and only if

• there is a vector $(\alpha, \beta_1, \beta_2, \beta_3) \in K^4$ satisfying certain conditions: $t = -v_K(\alpha) > 0$, $w_1 = -v_K(\beta_1) > 0$ both odd and furthermore, if $t = w_1$, then $-v_K(\alpha + \beta_1) = t = w_1$, meanwhile, for i = 2, 3 and $\beta_i \neq 0$, either $w_i = -v_K(\beta) = 0$ or $w_i = -v_K(\beta) > 0$ is odd, and

3
$$L = K(y, x_1, x_2, x_3)$$
 for some $y, x_1, x_2, x_3 \in K^{sep}$ such that

$$\begin{split} y^2 - y &= \alpha, \\ x_1^2 - x_1 &= \beta_1, \\ x_2^2 - x_2 &= \beta_1 x_1 + \beta_1 y + \beta_2, \\ x_3^2 - x_3 &= \beta_1^3 x_1 + \beta_1 x_1^3 + \beta_1 \beta_2 x_1 + \beta_1 x_1 x_2 + \beta_2 x_2 \\ &+ \beta_1^2 x_1 y + \beta_1 x_2 y + (\beta_2 + \beta_1 \beta_2 + \beta_1^2 \alpha + \beta_1) y + \beta_3. \end{split}$$

Since L is a C_8 -extension over K(y), it is associated with a Witt vector of length 3

$$(eta_1,\ eta_1y+eta_2,\ (eta_2+eta_1eta_2+eta_1^2lpha+eta_1+lpha)y+eta_3)\in W_3(K(y)).$$

Discussion

We arrive at this result, by observing that $Z(D_8) = \langle \sigma^4 \rangle$ and $D_8/Z(D_8) \cong D_4$.

Furthermore, $Z(D_4) = \langle \bar{\sigma}^2 \rangle$ and that $D_4/Z(D_4) \cong C_2 \times C_2$.

Thus starting with the $C_2 \times C_2$ -extension $K(y, x_1)$, we build up a D_4 -extension $K(y, x_1, x_2)$ by solving one embedding problem.

$$y^2 - y = \alpha,$$

 $x_1^2 - x_1 = \beta_1,$
 $x_2^2 - x_2 = \beta_1 x_1 + \beta_1 y + \beta_2.$

Then we build up the D_8 -extension $K(y, x_1, x_2, x_3)$ by solving another.

$$\begin{aligned} x_3^2 - x_3 &= \beta_1^3 x_1 + \beta_1 x_1^3 + \beta_1 \beta_2 x_1 + \beta_1 x_1 x_2 + \beta_2 x_2 \\ &+ \beta_1^2 x_1 y + \beta_1 x_2 y + (\beta_2 + \beta_1 \beta_2 + \beta_1^2 \alpha + \beta_1) y + \beta_3. \end{aligned}$$

Theorem (Witt, 1936) These embedding problems (for p-groups in characteristic p) are all solvable.

Griff Elder

Since these Artin-Schreier constants are so complicated, we can simplify them using the formalism of Witt vectors. Recall that Witt addition results produces certain polynomials

$$D_{1}(X_{1}; Y_{1}) = \frac{X_{1}^{p} + Y_{1}^{p} - (X_{1} + Y_{1})^{p}}{p},$$

$$D_{1}(X_{1}, X_{2}; Y_{1}, Y_{2}) = \frac{X_{1}^{p^{2}} + Y_{1}^{p^{2}} - (X_{1} + Y_{1})^{p^{2}} + p(X_{2}^{p} + Y_{2}^{p} - (X_{2} + Y_{2} + D_{1}(X_{1}; Y_{1}))^{p}}{p^{2}}.$$

The Witt vector corresponds to the C_8 -extensions L/K(y).

$$(\beta_1, \beta_1 y + \beta_2, (\beta_2 + \beta_1 \beta_2 + \beta_1^2 \alpha + \beta_1 + \alpha)y + \beta_3) \in W_3(K(y))$$

(Save this observation for later.)

Theorem (Saltman, 1978)

For each *p*-group *G*, there exist polynomials similar to the Witt polynomials for C_{p^n} -extensions. These polynomials, which depend only upon the group *G*, can be used to construct all such *G*-extensions. Let's call them Saltman polynomials S_i .

In our example with a group of order 2⁴ there are four Saltman polynomials S_0, S_1, S_2, S_3 and a vector $(\alpha, \beta_1, \beta_2, \beta_3) \in K^4$ such that $y^2 - y = S_0 + \alpha$, $x_1^2 - x_1 = S_1(y) + \beta_1$ with

$$S_0=0, \quad S_1(y)=0\in \mathbb{F}_p[y],$$

 $x_2^2 - x_2 = S_2(y, x_1) + \beta_2$ with

$$\mathcal{S}_2(y,x_1)=eta_1x_1+eta_1y=(x_1^2-x_1)x_1+(x_1^2-x_1)y\in \mathbb{F}_
ho[y,x_1],$$

and $x_3^2 - x_3 = S_3(y, x_1, x_2) + \beta_3$ with

$$\begin{split} S_{3}(y,x_{1},x_{2}) &= \beta_{1}^{3}x_{1} + \beta_{1}x_{1}^{3} + \beta_{1}\beta_{2}x_{1} + \beta_{1}x_{1}x_{2} + \beta_{2}x_{2} \\ &+ \beta_{1}^{2}x_{1}y + \beta_{1}x_{2}y + (\beta_{2} + \beta_{1}\beta_{2} + \beta_{1}^{2}\alpha + \beta_{1})y \\ &= (x_{1}^{2} - x_{1})^{3}x_{1} + (x_{1}^{2} - x_{1})x_{1}^{3} + (x_{1}^{2} - x_{1})(x_{2}^{2} - x_{2})x_{1} + (x_{1}^{2} - x_{1})x_{1}x_{2} + (x_{2}^{2} - x_{2})x_{2} \\ &+ (x_{1}^{2} - x_{1})^{2}x_{1}y + (x_{1}^{2} - x_{1})x_{2}y \\ &+ ((x_{2}^{2} - x_{2}) + (x_{1}^{2} - x_{1})(x_{2}^{2} - x_{2}) + (x_{1}^{2} - x_{1})^{2}(y^{2} - y) + x_{1}^{2} - x_{1})y \in \mathbb{F}_{\rho}[y, x_{1}, x_{2}]. \end{split}$$

Record that the total degrees of S_2 and S_3 are $l_2 = 3$ and $l_3 = 7$, respectively.

Generic scaffolds

Theorem. (with Kevin Keating) Let K_0 be a local field of characteristic p and let G be a p-group with a composition series chosen. The result adjusts (Saltman, 1978) slightly and describes all G-extensions K_n/K_0 : There exist $x_i \in K_0^{\text{sep}}$ such that for $1 \le i \le n$ $K_i = K_0(x_1, \ldots, x_i)$ with $x_i^p - x_i \in K_{i-1}$ and chosen composition series

$$\{\operatorname{Gal}(K_n/K_i): 0 \leq i \leq n\}.$$

This description uses Saltman polynomials $S_i \in \mathbb{F}_p[X_1, \ldots, X_{i-1}]$ for $1 \le i \le n$. Polynomials that depend only on the group G, and a Saltman vector $(\beta_1, \ldots, \beta_n) \in K_0^n$ such that

$$x_i^p - x_i = S_i(x_1, \ldots, x_{i-1}) + \beta_i.$$

Then restricting the Saltman vector $(\beta_1, \ldots, \beta_n) = \beta_1 \cdot (1, \omega_2^{p^{n-1}}, \ldots, \omega_n^{p^{n-1}})$ with $p \nmid v_K(\beta_1)$ and $v_K(\beta_i) = -u_i$ such that $0 > -u_1 > -u_2 > \cdots > -u_n$. If we assume that the integers b_i are defined recursively by $b_1 = u_1$ and $b_i = b_{i-1} + p^{i-1}(u_i - u_{i-1})$ and are spread sufficiently apart:

$$b_i > -p^{n-1}v_{\mathcal{K}}(S_i(x_1,\ldots,x_{i-1})) - p^{n-i}b_{i-1} + p^{n-1}u_{i-1}, \qquad (1)$$

$$b_i > p^{n-1} u_{i-1},$$
 (2)

for all $2 \le i \le n$, then $\{\operatorname{Gal}(K_n/K_i) : 0 \le i \le n\}$ is the list of ramification groups, u_1, \ldots, u_n are the upper ramification breaks, b_1, \ldots, b_n are the lower ramification breaks and K_n/K_0 admits a Galois scaffold with precision c equal to the minimum gap of (1), (2). Additionally, $v_{\mathcal{K}}(x_i) = -p^{-1}u_i$. Using the crudist upper bound, we have

$$I_i u_{i-1} \geq -v_{\mathcal{K}}(S_i(x_1,\ldots,x_{i-1}))$$

where l_i is the total degree of S_i . Thus we can replace (1) and (2) with

$$b_i > p^{n-2}u_{i-1} - p^{n-i}b_{i-1} + p^{n-1}u_{i-1}$$

for $2 \le i \le n$ with the result that we have a Galois scaffold with precision c the minimum of that gaps among these inequalities.

Note that until we know what group G we are working with, and know the Saltman polynomials, we can't do much better than this.

On the other hand, we can do much better if we know the *ramification spectrum* for the particular group.

Namely, in the case of D_8 -extensions, if we knew the set

$$\{u_1, u_2, u_3, u_4\}$$

of all realizable upper ramification breaks (equivalently, the set $\{l_1, l_2, l_3, l_4\}$ of lower ramification breaks).

Towards ramification breaks

Given a prime element $\pi_L \in L$ the ramification groups (in lower numbering) are given by

$$G_i = \{\sigma \in \operatorname{Gal}(L/K) : v_L((\sigma-1)\pi_L) \ge i+1\}.$$

Ramification breaks b occur when $G_b \supseteq G_{b+1}$. Since L/K is totally ramified, $b \ge 1$.

Ch. IV in *Local Fields* by Serre: If $\sigma_1 \in G_{i_1}$ and $\sigma_2 \in G_{i_2}$, then $\sigma_1 \sigma_2 \sigma_1^{-1} \sigma_2^{-1} \in G_{i_1+i_2+1}$. Thus the center contains smallest nontrivial ramification group (largest break number).

Since
$$Z(D_8) = \langle \sigma^4 \rangle$$
 and $Z(D_8/\langle \sigma^4 \rangle) = \langle \overline{\sigma}^2 \rangle$ both have order $p = 2$,
 $\langle \sigma^4 \rangle = G^{u_4} = G_{l_4}$ and $\langle \sigma^2 \rangle = G^{u_3} = G_{l_3}$ are ramification groups.

This means that the first two lower ramification breaks of L_3/K , namely $l_1 \leq l_2$, are also the lower ramification breaks of L_1/K .

Meanwhile, recall the Hasse-Herbrand function

$$\phi_{L/K}(x) = \int_0^x \frac{dt}{[G_0:G_t]},$$

which allows us to define the upper ramification numbering, $G_i = G^{\phi_{L/K}(i)}$. The lower numbering passing nicely to subgroups $H_i = G_i \cap H$. Upper numbering passes nicely to quotients $(G/N)^i = (G^i N)/N$.

The upper ramification breaks for L_2/K are thus the three smallest upper ramification breaks for L_3/K . These were determined by Bradley Weaver (2018) in his solution of the *local-lifting problem* for D_4 ; namely, his proof that D_4 is a *local Oort group for* p = 2.

Our contribution then is the fourth upper ramification break.

Our approach

Determine the ramification breaks of the C_8 -extensions L_3/L_0 based upon the Witt vector:

$$(\beta_1, \beta_1y + \beta_2, (\beta_2 + \beta_1\beta_2 + \beta_1^2\alpha + \beta_1 + \alpha)y + \beta_3) \in W_3(K(y)).$$

Big "If": If our Witt vector was reduced to $(\rho_1, \rho_2, \rho_3) \in W_3(K(y))$; that is, if we had $(\rho_1, \rho_2, \rho_3) \equiv (\beta_1, \beta_1 y + \beta_2, (\beta_2 + \beta_1 \beta_2 + \beta_1^2 \alpha + \beta_1 + \alpha)y + \beta_3) \pmod{W_3(K(y))^{\wp}}$ where first $\rho_1 \in L_0$ has maximal valuation modulo $W_3(K(y))^{\wp} = \{\phi(\vec{x}) \ominus \vec{x} : \vec{x} \in K(y)\}$, then ρ_2 is adjusted so that it has maximal valuation modulo $W_3(K(y))^{\wp}$, etc., where ϕ is the Frobenius and \ominus is Witt vector subtraction.

...if so, then we can use a very useful technical result in L. Thomas, 2005: If u_2 is the second upper ramification break in the C_4 -extension associated with the reduced Witt vector (ρ_1, ρ_2) , then $2u_2$ is the third upper break in the C_8 -extension associated with $(\rho_1, \rho_2, 0)$.

In general: From (ρ_1, \ldots, ρ_n) to $(\rho_1, \ldots, \rho_n, 0)$ largest upper break goes from u to pu.

Thus the largest upper break in the C_8 -extension associated with reduced vector (ρ_1, ρ_2, ρ_3) is

$$u_3 = \max\{2u_2, w_3\}$$

where $w_3 = -v_K(\rho_3)$. Remember: L. Thomas' result is for cyclic extensions.

Upper breaks $u_1 \le u_2 < u_3 < u_4$ of L_3/K

A lot of very technical calculations go into reducing

 $(\beta_1, \beta_1y + \beta_2, (\beta_2 + \beta_1\beta_2 + \beta_1^2\alpha + \beta_1 + \alpha)y + \beta_3) \in W_3(K(y)).$

Once completed, the result is familiar: $u_1 \leq u_2 < u_3$ agree with Weaver's result, moreover...

Theorem $u_4 = \max\{2u_3, w_3\}$ where u_3 is the largest upper ramification break of L_2/K and $w_3 = -v_K(\beta_3)$ for the coordinate $\beta_3 \in K$ added to the D_4 -Saltman vector $(\alpha, \beta_1, \beta_2)$ to produce the D_8 -Saltman vector $(\alpha, \beta_1, \beta_2, \beta_3)$.

Using this we can strengthen the result with Keating when it is applied to D_8 -extensions.

But perhaps more interesting:

 D_8 has the same ramification spectrum as two other groups of order 16: the semidihedral and generalized quaternion group.

take-away point:

"You can't know a group by its ramification spectrum."

Wild guessing

Perhaps what we saw in D_8 -extensions, namely $u_4 \ge 2u_3$, happens more generally:

If $u_1 \leq u_2 < u_3 < \cdots < u_n$ are the upper ramification breaks for a $D_{2^{n-1}}$ -extension L/K then $u_1 \leq u_2 < u_3$ are as in Weaver's result. And maybe for $3 < i \leq n$,

$$u_i = \max\{2u_{i-1}, w_{i-1}\}$$

where $w_i = -v_{\mathcal{K}}(\beta_i)$ for the coordinate $\beta_i \in \mathcal{K}$ in the $D_{2^{n-1}}$ -Saltman vector $(\alpha, \beta_1, \beta_2, \ldots, \beta_{n-1})$.

Wild guess-a-llaries. This would give an arbitrarily large family of totally ramified *p*-extensions where the upper ramification breaks are all integers.

p = 2 is very different from characteristic p > 2.

Plug "A converse to the Hasse-Arf theorem" w/ Keating.

Thank you!

...and thank you for participating in

Hopf algebras & Galois module theory 2023