Through a dihedral prism

Griff Elder
University of Nebraska at Omaha

June 2, 2023

(additive) Galois module structure

Let p be prime and let K be a local field of residue characteristic p. e.g.

- in characteristic $0: K$ is a finite extension of \mathbb{Q}_{p}, the p-adic numbers.
- in characteristic $p: K=\mathbb{F}((t))$, field of Laurent series with coefficients in a finite field \mathbb{F} of characteristic p.

Let L / K be a finite, totally ramified Galois extension with $G=\operatorname{Gal}(L / K)$ a p-group
The normal basis theorem says that $L=K[G] \cdot \alpha$ for some $\alpha \in L$.

Towards an integral version: If there is an order \mathcal{A} in $K[G]$ such that the ring of integers $\mathcal{O}_{L}=\mathcal{A} \cdot \alpha$ for some $\alpha \in \mathcal{O}_{L}$, this order \mathcal{A} must be the associated order:

$$
\mathcal{A}_{L / K}=\left\{x \in K[G]: x \cdot \mathcal{O}_{L} \subseteq \mathcal{O}_{L}\right\}
$$

We use " $\mathcal{O}_{L}=\mathcal{A}_{L / K} \cdot \alpha$ " and " \mathcal{O}_{L} is free over $\mathcal{A}_{L / K}$ " interchangeably.
This is the goal of (additive) GMS.

Snapshot: C_{p}-extensions

Theorem (F. Bertrandias, J.P. Bertrandias, M.J. Ferton, 1972)
Let K be a finite extension of \mathbb{Q}_{p}. Let L / K be a totally ramified extension of degree p with ramification break b. (Necessarily, $1 \leq b \leq \frac{p v_{K}(p)}{p-1}$)
(1) If $p \mid b$, then \mathcal{O}_{L} is free over $\mathcal{A}_{L / K}$.
(2) If $p \nmid b$, let $r(b) \equiv b \bmod p$ with $1 \leq r(b) \leq p-1$, then
(0) if $1 \leq b \leq \frac{p v_{K}(p)}{p-1}-1$, then \mathcal{O}_{L} is free over $\mathcal{A}_{L / K}$ if and only if $r(b) \mid(p-1)$.
(b) if $b \geq \frac{p v_{K}(p)}{p-1}-1, \mathcal{O}_{L}$ is free over $\mathcal{A}_{L / K}$ if and only if $N \leq 4$, where N is the length of the continued fraction expansion

$$
\frac{b}{p}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\cdots \frac{1}{\cdots+\frac{1}{a_{N}}}}}
$$

with $a_{N} \geq 2$.

Theorem (A. Aiba, 2003)
In characteristic p, namely $K=\mathbb{F}((t)), v_{K}(p)=\infty$ and there is only one case: $p \nmid b$. Furthermore, \mathcal{O}_{L} is free over $\mathcal{A}_{L / K}$ if and only if $r(b) \mid(p-1)$.

Snapshot: C_{p}-extensions

Theorem (F. Bertrandias, J.P. Bertrandias, M.J. Ferton, 1972)
Let K be a finite extension of \mathbb{Q}_{p}. Let L / K be a totally ramified extension of degree p with ramification break b. (Necessarily, $1 \leq b \leq \frac{p v_{K}(p)}{p-1}$)
(1) If $p \mid b$, then \mathcal{O}_{L} is free over $\mathcal{A}_{L / K}$.
(2) If $p \nmid b$, let $r(b) \equiv b \bmod p$ with $1 \leq r(b) \leq p-1$, then
(a) if $1 \leq b \leq \frac{p v_{K}(p)}{p-1}-1$, then \mathcal{O}_{L} is free over $\mathcal{A}_{L / K}$ if and only if $r(b) \mid(p-1)$.
(b) if $b \geq \frac{p v_{K}(p)}{p-1}-1, \mathcal{O}_{L}$ is free over $\mathcal{A}_{L / K}$ if and only if $N \leq 4$, where N is the length of the continued fraction expansion

$$
\frac{b}{p}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\cdots \frac{1}{\cdots+\frac{1}{a_{N}}}}}
$$

with $a_{N} \geq 2$.

Theorem (A. Aiba, 2003)
In characteristic p, namely $K=\mathbb{F}((t)), v_{K}(p)=\infty$ and there is only one case: $p \nmid b$. Furthermore, \mathcal{O}_{L} is free over $\mathcal{A}_{L / K}$ if and only if $r(b) \mid(p-1)$.

Snapshot: C_{p}-extensions

Theorem (F. Bertrandias, J.P. Bertrandias, M.J. Ferton, 1972)
Let K be a finite extension of \mathbb{Q}_{p}. Let L / K be a totally ramified extension of degree p with ramification break b. (Necessarily, $1 \leq b \leq \frac{p v_{K}(p)}{p-1}$)
(1) If $p \mid b$, then \mathcal{O}_{L} is free over $\mathcal{A}_{L / K}$.
(2) If $p \nmid b$, let $r(b) \equiv b \bmod p$ with $1 \leq r(b) \leq p-1$, then
(a) if $1 \leq b \leq \frac{p v_{K}(p)}{p-1}-1$, then \mathcal{O}_{L} is free over $\mathcal{A}_{L / K}$ if and only if $r(b) \mid(p-1)$.
(D) if $b \geq \frac{p v_{K}(p)}{p-1}-1, \mathcal{O}_{L}$ is free over $\mathcal{A}_{L / K}$ if and only if $N \leq 4$, where N is the length of the continued fraction expansion

$$
\frac{b}{p}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\cdots \frac{1}{\cdots+\frac{1}{a_{N}}}}}
$$

with $a_{N} \geq 2$.
Theorem (A. Aiba, 2003)
In characteristic p, namely $K=\mathbb{F}((t)), v_{K}(p)=\infty$ and there is only one case: $p \nmid b$.
Furthermore, \mathcal{O}_{L} is free over $\mathcal{A}_{L / K}$ if and only if $r(b) \mid(p-1)$.
(a) char p is part of the char 0 picture. (b) "Galois scaffold"

Intuition of a Scaffold

L / K is a totally ramified p-extension. A is a K-algebra of the same size: $\operatorname{dim}_{K}(A)=\operatorname{dim}_{K}(L)$, with a K-action on L.

An A-scaffold on L consists of certain special elements in A which act on suitable elements of L in a way which is tightly linked to valuation.

The intuition: Given any positive integers b_{i} for $1 \leq i \leq n$ such that $p \nmid b_{i}$, there are elements $X_{i} \in L$ such that $v_{L}\left(X_{i}\right)=-p^{n-i} b_{i}$. Since the valuations, v_{L}, of the monomials

$$
\mathbb{X}^{a}=X_{n}^{a(0)} X_{n-1}^{a(1)} \cdots X_{1}^{a(n-1)}: 0 \leq a_{(i)}<p
$$

provide a complete set of residues modulo p^{n} and L / K is totally ramified of degree p^{n}, these monomials provide a convenient K-basis for L.

The action of A on L is clearly determined by its action on the \mathbb{X}^{a}.

So if there were $\Psi_{i} \in A$ for $1 \leq i \leq n$ such that each Ψ_{i} acts on the monomial basis element \mathbb{X}^{a} of L as if it were the differential operator $d / d X_{i}$ and the X_{i} were independent variables, namely if

$$
\Psi_{i} \mathbb{X}^{a}=a_{(n-i)} \mathbb{X}^{a} / X_{i}
$$

then the monomials in the Ψ_{i} (with exponents bound $<p$) would furnish a convenient basis for A whose effect on the \mathbb{X}^{a} would be easy to determine.

As a consequence, the determination of the associated order of a particular ideal \mathfrak{P}_{L}^{h}, and of the structure of this ideal as a module over its associated order, would be reduced to a purely numerical calculation involving h and the b_{i}. This remains true if equality is loosened to the congruence,

$$
\Psi_{i} \mathbb{X}^{a} \equiv a_{(n-i)} \mathbb{X}^{a} / X_{i} \bmod \left(\mathbb{X}^{a} / X_{i}\right) \mathfrak{P}_{L}^{c}
$$

for a sufficiently large "precision" \mathfrak{c}. The Ψ_{i}, together with the \mathbb{X}^{a}, constitute an A-scaffold on L. The formal definition focuses solely on valuation, remaining agnostic on the actual nature of the action.

Galois scaffolds

Ironically, the first scaffolds were not constructed in purely inseparable p-extensions where derivations occur naturally.

Those only arose when the "intuition" met Lindsay Childs. See (Byott, Childs, E., 2018) and (Koch, 2015),
...and this intuition took a long time to develop:

The first scaffolds were Galois scaffolds and arose for elementary abelian p-extensions (E., 2009), (Byott, E., 2013) in characteristic p.

Focused study of $C_{p} \times C_{p}$-extensions with Byott.
Although, Galois scaffolds for $C_{p^{2}}$-extensions were constructed in (Byott, E., 2013), it wasn't clear how to generalize the construction to $C_{p^{n}}$-extensions with $n \geq 3$.

That is... until (E., Keating, 2022).
Today I would like to talk about a further generalization (with Kevin) to all p-groups in characteristic p.

Dihedral extensions in characteristic 2

Let $K=\mathbb{F}((t))$ with \mathbb{F} a finite field of characteristic 2 . Let

$$
D_{8}=\left\langle\gamma, \sigma: \sigma^{8}=\gamma^{2}=1, \gamma \sigma \gamma=\sigma^{-1}\right\rangle
$$

Proposition. L is a totally ramified D_{8}-extension over K if and only if
(1) there is a vector $\left(\alpha, \beta_{1}, \beta_{2}, \beta_{3}\right) \in K^{4}$ satisfying certain conditions: $t=-v_{K}(\alpha)>0$, $w_{1}=-v_{K}\left(\beta_{1}\right)>0$ both odd and furthermore, if $t=w_{1}$, then $-v_{K}\left(\alpha+\beta_{1}\right)=t=w_{1}$, meanwhile, for $i=2,3$ and $\beta_{i} \neq 0$, either $w_{i}=-v_{K}(\beta)=0$ or $w_{i}=-v_{K}(\beta)>0$ is odd, and
(2) $L=K\left(y, x_{1}, x_{2}, x_{3}\right)$ for some $y, x_{1}, x_{2}, x_{3} \in K^{\text {sep }}$ such that

$$
\begin{aligned}
y^{2}-y & =\alpha \\
x_{1}^{2}-x_{1} & =\beta_{1} \\
x_{2}^{2}-x_{2} & =\beta_{1} x_{1}+\beta_{1} y+\beta_{2} \\
x_{3}^{2}-x_{3} & =\beta_{1}^{3} x_{1}+\beta_{1} x_{1}^{3}+\beta_{1} \beta_{2} x_{1}+\beta_{1} x_{1} x_{2}+\beta_{2} x_{2} \\
& +\beta_{1}^{2} x_{1} y+\beta_{1} x_{2} y+\left(\beta_{2}+\beta_{1} \beta_{2}+\beta_{1}^{2} \alpha+\beta_{1}\right) y+\beta_{3} .
\end{aligned}
$$

Since L is a C_{8}-extension over $K(y)$, it is associated with a Witt vector of length 3

$$
\left(\beta_{1}, \beta_{1} y+\beta_{2},\left(\beta_{2}+\beta_{1} \beta_{2}+\beta_{1}^{2} \alpha+\beta_{1}+\alpha\right) y+\beta_{3}\right) \in W_{3}(K(y))
$$

Discussion

We arrive at this result, by observing that $Z\left(D_{8}\right)=\left\langle\sigma^{4}\right\rangle$ and $D_{8} / Z\left(D_{8}\right) \cong D_{4}$.
Furthermore, $Z\left(D_{4}\right)=\left\langle\bar{\sigma}^{2}\right\rangle$ and that $D_{4} / Z\left(D_{4}\right) \cong C_{2} \times C_{2}$.
Thus starting with the $C_{2} \times C_{2}$-extension $K\left(y, x_{1}\right)$, we build up a D_{4}-extension $K\left(y, x_{1}, x_{2}\right)$ by solving one embedding problem.

$$
\begin{aligned}
y^{2}-y & =\alpha \\
x_{1}^{2}-x_{1} & =\beta_{1} \\
x_{2}^{2}-x_{2} & =\beta_{1} x_{1}+\beta_{1} y+\beta_{2}
\end{aligned}
$$

Then we build up the D_{8}-extension $K\left(y, x_{1}, x_{2}, x_{3}\right)$ by solving another.

$$
\begin{aligned}
x_{3}^{2}-x_{3}=\beta_{1}^{3} x_{1}+\beta_{1} x_{1}^{3}+\beta_{1} \beta_{2} x_{1} & +\beta_{1} x_{1} x_{2}+\beta_{2} x_{2} \\
& +\beta_{1}^{2} x_{1} y+\beta_{1} x_{2} y+\left(\beta_{2}+\beta_{1} \beta_{2}+\beta_{1}^{2} \alpha+\beta_{1}\right) y+\beta_{3} .
\end{aligned}
$$

Theorem (Witt, 1936)
These embedding problems (for p-groups in characteristic p) are all solvable.

Since these Artin-Schreier constants are so complicated, we can simplify them using the formalism of Witt vectors. Recall that Witt addition results produces certain polynomials

$$
\begin{aligned}
D_{1}\left(X_{1} ; Y_{1}\right) & =\frac{X_{1}^{p}+Y_{1}^{p}-\left(X_{1}+Y_{1}\right)^{p}}{p} \\
D_{1}\left(X_{1}, X_{2} ; Y_{1}, Y_{2}\right) & =\frac{X_{1}^{p^{2}}+Y_{1}^{p^{2}}-\left(X_{1}+Y_{1}\right)^{p^{2}}+p\left(X_{2}^{p}+Y_{2}^{p}-\left(X_{2}+Y_{2}+D_{1}\left(X_{1} ; Y_{1}\right)\right)^{p}\right.}{p^{2}}
\end{aligned}
$$

The Witt vector corresponds to the C_{8}-extensions $L / K(y)$.

$$
\left(\beta_{1}, \beta_{1} y+\beta_{2},\left(\beta_{2}+\beta_{1} \beta_{2}+\beta_{1}^{2} \alpha+\beta_{1}+\alpha\right) y+\beta_{3}\right) \in W_{3}(K(y))
$$

(Save this observation for later.)

Theorem (Saltman, 1978)
For each p-group G, there exist polynomials similar to the Witt polynomials for $C_{p^{n}}$-extensions. These polynomials, which depend only upon the group G, can be used to construct all such G-extensions. Let's call them Saltman polynomials S_{i}.

In our example with a group of order 2^{4} there are four Saltman polynomials $S_{0}, S_{1}, S_{2}, S_{3}$ and a vector $\left(\alpha, \beta_{1}, \beta_{2}, \beta_{3}\right) \in K^{4}$ such that $y^{2}-y=S_{0}+\alpha, x_{1}^{2}-x_{1}=S_{1}(y)+\beta_{1}$ with

$$
S_{0}=0, \quad S_{1}(y)=0 \in \mathbb{F}_{p}[y],
$$

$x_{2}^{2}-x_{2}=S_{2}\left(y, x_{1}\right)+\beta_{2}$ with

$$
S_{2}\left(y, x_{1}\right)=\beta_{1} x_{1}+\beta_{1} y=\left(x_{1}^{2}-x_{1}\right) x_{1}+\left(x_{1}^{2}-x_{1}\right) y \in \mathbb{F}_{p}\left[y, x_{1}\right],
$$

and $x_{3}^{2}-x_{3}=S_{3}\left(y, x_{1}, x_{2}\right)+\beta_{3}$ with

$$
\begin{aligned}
& S_{3}\left(y, x_{1}, x_{2}\right)=\beta_{1}^{3} x_{1}+\beta_{1} x_{1}^{3}+\beta_{1} \beta_{2} x_{1}+\beta_{1} x_{1} x_{2}+\beta_{2} x_{2} \\
&+\beta_{1}^{2} x_{1} y+\beta_{1} x_{2} y+\left(\beta_{2}+\beta_{1} \beta_{2}+\beta_{1}^{2} \alpha+\beta_{1}\right) y \\
&=\left(x_{1}^{2}-x_{1}\right)^{3} x_{1}+\left(x_{1}^{2}-x_{1}\right) x_{1}^{3}+\left(x_{1}^{2}-x_{1}\right)\left(x_{2}^{2}-x_{2}\right) x_{1}+\left(x_{1}^{2}-x_{1}\right) x_{1} x_{2}+\left(x_{2}^{2}-x_{2}\right) x_{2} \\
&+\left(x_{1}^{2}-x_{1}\right)^{2} x_{1} y+\left(x_{1}^{2}-x_{1}\right) x_{2} y \\
&+\left(\left(x_{2}^{2}-x_{2}\right)+\left(x_{1}^{2}-x_{1}\right)\left(x_{2}^{2}-x_{2}\right)+\left(x_{1}^{2}-x_{1}\right)^{2}\left(y^{2}-y\right)+x_{1}^{2}-x_{1}\right) y \in \mathbb{F}_{p}\left[y, x_{1}, x_{2}\right] .
\end{aligned}
$$

Record that the total degrees of S_{2} and S_{3} are $I_{2}=3$ and $I_{3}=7$, respectively.

Generic scaffolds

Theorem. (with Kevin Keating) Let K_{0} be a local field of characteristic p and let G be a p-group with a composition series chosen. The result adjusts (Saltman, 1978) slightly and describes all G-extensions K_{n} / K_{0} : There exist $x_{i} \in K_{0}^{\text {sep }}$ such that for $1 \leq i \leq n$ $K_{i}=K_{0}\left(x_{1}, \ldots, x_{i}\right)$ with $x_{i}^{p}-x_{i} \in K_{i-1}$ and chosen composition series

$$
\left\{\operatorname{Gal}\left(K_{n} / K_{i}\right): 0 \leq i \leq n\right\}
$$

This description uses Saltman polynomials $S_{i} \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{i-1}\right]$ for $1 \leq i \leq n$. Polynomials that depend only on the group G, and a Saltman vector $\left(\beta_{1}, \ldots, \beta_{n}\right) \in K_{0}^{n}$ such that

$$
x_{i}^{p}-x_{i}=S_{i}\left(x_{1}, \ldots, x_{i-1}\right)+\beta_{i}
$$

Then restricting the Saltman vector $\left(\beta_{1}, \ldots, \beta_{n}\right)=\beta_{1} \cdot\left(1, \omega_{2}^{p^{n-1}}, \ldots, \omega_{n}^{p^{n-1}}\right)$ with $p \nmid v_{K}\left(\beta_{1}\right)$ and $v_{K}\left(\beta_{i}\right)=-u_{i}$ such that $0>-u_{1}>-u_{2}>\cdots>-u_{n}$. If we assume that the integers b_{i} are defined recursively by $b_{1}=u_{1}$ and $b_{i}=b_{i-1}+p^{i-1}\left(u_{i}-u_{i-1}\right)$ and are spread sufficiently apart:

$$
\begin{align*}
& b_{i}>-p^{n-1} v_{K}\left(S_{i}\left(x_{1}, \ldots, x_{i-1}\right)\right)-p^{n-i} b_{i-1}+p^{n-1} u_{i-1}, \tag{1}\\
& b_{i}>p^{n-1} u_{i-1} \tag{2}
\end{align*}
$$

for all $2 \leq i \leq n$, then $\left\{\operatorname{Gal}\left(K_{n} / K_{i}\right): 0 \leq i \leq n\right\}$ is the list of ramification groups, u_{1}, \ldots, u_{n} are the upper ramification breaks, b_{1}, \ldots, b_{n} are the lower ramification breaks and K_{n} / K_{0} admits a Galois scaffold with precision \mathfrak{c} equal to the minimum gap of (1), (2).

Additionally, $v_{K}\left(x_{i}\right)=-p^{-1} u_{i}$. Using the crudist upper bound, we have

$$
l_{i} u_{i-1} \geq-v_{K}\left(S_{i}\left(x_{1}, \ldots, x_{i-1}\right)\right)
$$

where I_{i} is the total degree of S_{i}. Thus we can replace (1) and (2) with

$$
b_{i}>p^{n-2} u_{i-1}-p^{n-i} b_{i-1}+p^{n-1} u_{i-1}
$$

for $2 \leq i \leq n$ with the result that we have a Galois scaffold with precision \mathfrak{c} the minimum of that gaps among these inequalities.

Note that until we know what group G we are working with, and know the Saltman polynomials, we can't do much better than this.

On the other hand, we can do much better if we know the ramification spectrum for the particular group.

Namely, in the case of D_{8}-extensions, if we knew the set

$$
\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}
$$

of all realizable upper ramification breaks (equivalently, the set $\left\{I_{1}, I_{2}, I_{3}, I_{4}\right\}$ of lower ramification breaks).

Towards ramification breaks

Given a prime element $\pi_{L} \in L$ the ramification groups (in lower numbering) are given by

$$
G_{i}=\left\{\sigma \in \operatorname{Gal}(L / K): v_{L}\left((\sigma-1) \pi_{\llcorner }\right) \geq i+1\right\} .
$$

Ramification breaks b occur when $G_{b} \supsetneq G_{b+1}$. Since L / K is totally ramified, $b \geq 1$.
Ch. IV in Local Fields by Serre: If $\sigma_{1} \in G_{i_{1}}$ and $\sigma_{2} \in G_{i 2}$, then $\sigma_{1} \sigma_{2} \sigma_{1}^{-1} \sigma_{2}^{-1} \in G_{i_{1}+i_{2}+1}$. Thus the center contains smallest nontrivial ramification group (largest break number).

Since $Z\left(D_{8}\right)=\left\langle\sigma^{4}\right\rangle$ and $Z\left(D_{8} /\left\langle\sigma^{4}\right\rangle\right)=\left\langle\bar{\sigma}^{2}\right\rangle$ both have order $p=2$,

$$
\left\langle\sigma^{4}\right\rangle=G^{u_{4}}=G_{l_{4}} \text { and }\left\langle\sigma^{2}\right\rangle=G^{u_{3}}=G_{13} \text { are ramification groups. }
$$

This means that the first two lower ramification breaks of L_{3} / K, namely $l_{1} \leq I_{2}$, are also the lower ramification breaks of L_{1} / K.

Meanwhile, recall the Hasse-Herbrand function

$$
\phi_{L / K}(x)=\int_{0}^{x} \frac{d t}{\left[G_{0}: G_{t}\right]},
$$

which allows us to define the upper ramification numbering, $G_{i}=G^{\phi / / K}{ }^{(i)}$. The lower numbering passing nicely to subgroups $H_{i}=G_{i} \cap H$. Upper numbering passes nicely to quotients $(G / N)^{i}=\left(G^{i} N\right) / N$.

The upper ramification breaks for L_{2} / K are thus the three smallest upper ramification breaks for L_{3} / K. These were determined by Bradley Weaver (2018) in his solution of the local-lifting problem for D_{4}; namely, his proof that D_{4} is a local Oort group for $p=2$.

Our contribution then is the fourth upper ramification break.

Our approach

Determine the ramification breaks of the C_{8}-extensions L_{3} / L_{0} based upon the Witt vector:

$$
\left(\beta_{1}, \beta_{1} y+\beta_{2},\left(\beta_{2}+\beta_{1} \beta_{2}+\beta_{1}^{2} \alpha+\beta_{1}+\alpha\right) y+\beta_{3}\right) \in W_{3}(K(y))
$$

Big "If": If our Witt vector was reduced to $\left(\rho_{1}, \rho_{2}, \rho_{3}\right) \in W_{3}(K(y))$; that is, if we had $\left(\rho_{1}, \rho_{2}, \rho_{3}\right) \equiv\left(\beta_{1}, \beta_{1} y+\beta_{2},\left(\beta_{2}+\beta_{1} \beta_{2}+\beta_{1}^{2} \alpha+\beta_{1}+\alpha\right) y+\beta_{3}\right)\left(\bmod W_{3}(K(y))^{\wp}\right)$ where first $\rho_{1} \in L_{0}$ has maximal valuation modulo $W_{3}(K(y))^{\wp}=\{\phi(\vec{x}) \ominus \vec{x}: \vec{x} \in K(y)\}$, then ρ_{2} is adjusted so that it has maximal valuation modulo $W_{3}(K(y))^{\varsigma}$, etc., where ϕ is the Frobenius and \ominus is Witt vector subtraction.
...if so, then we can use a very useful technical result in L. Thomas, 2005: If u_{2} is the second upper ramification break in the C_{4}-extension associated with the reduced Witt vector $\left(\rho_{1}, \rho_{2}\right)$, then $2 u_{2}$ is the third upper break in the C_{8}-extension associated with $\left(\rho_{1}, \rho_{2}, 0\right)$.

In general: From $\left(\rho_{1}, \ldots, \rho_{n}\right)$ to $\left(\rho_{1}, \ldots, \rho_{n}, 0\right)$ largest upper break goes from u to $p u$.
Thus the largest upper break in the C_{8}-extension associated with reduced vector $\left(\rho_{1}, \rho_{2}, \rho_{3}\right)$ is

$$
u_{3}=\max \left\{2 u_{2}, w_{3}\right\}
$$

where $w_{3}=-v_{K}\left(\rho_{3}\right)$. Remember: L. Thomas' result is for cyclic extensions.

Upper breaks $u_{1} \leq u_{2}<u_{3}<u_{4}$ of L_{3} / K

A lot of very technical calculations go into reducing

$$
\left(\beta_{1}, \beta_{1} y+\beta_{2},\left(\beta_{2}+\beta_{1} \beta_{2}+\beta_{1}^{2} \alpha+\beta_{1}+\alpha\right) y+\beta_{3}\right) \in W_{3}(K(y)) .
$$

Once completed, the result is familiar: $u_{1} \leq u_{2}<u_{3}$ agree with Weaver's result, moreover...

Theorem $u_{4}=\max \left\{2 u_{3}, w_{3}\right\}$ where u_{3} is the largest upper ramification break of L_{2} / K and $w_{3}=-v_{K}\left(\beta_{3}\right)$ for the coordinate $\beta_{3} \in K$ added to the D_{4}-Saltman vector ($\alpha, \beta_{1}, \beta_{2}$) to produce the D_{8}-Saltman vector ($\alpha, \beta_{1}, \beta_{2}, \beta_{3}$).

Using this we can strengthen the result with Keating when it is applied to D_{8}-extensions.
But perhaps more interesting:
D_{8} has the same ramification spectrum as two other groups of order 16: the semidihedral and generalized quaternion group.
take-away point:
"You can't know a group by its ramification spectrum."

Wild guessing

Perhaps what we saw in D_{8}-extensions, namely $u_{4} \geq 2 u_{3}$, happens more generally:

If $u_{1} \leq u_{2}<u_{3}<\cdots<u_{n}$ are the upper ramification breaks for a $D_{2^{n-1}}$-extension L / K then $u_{1} \leq u_{2}<u_{3}$ are as in Weaver's result. And maybe for $3<i \leq n$,

$$
u_{i}=\max \left\{2 u_{i-1}, w_{i-1}\right\}
$$

where $w_{i}=-v_{K}\left(\beta_{i}\right)$ for the coordinate $\beta_{i} \in K$ in the $D_{2^{n-1}}$-Saltman vector $\left(\alpha, \beta_{1}, \beta_{2}, \ldots, \beta_{n-1}\right)$.

Wild guess-a-llaries. This would give an arbitrarily large family of totally ramified p-extensions where the upper ramification breaks are all integers.
$p=2$ is very different from characteristic $p>2$.
Plug "A converse to the Hasse-Arf theorem" w/ Keating.

Thank you!

...and thank you for participating in

Hopf algebras \& Galois module theory 2023

